
E BOOK

contrastsecurity.com

Bringing an End to
Security Roadblocks
How Development Teams Can Push
Code Continuously While Prioritizing
Security as a Quality Metric

E BOOK

Executive Overview
Thanks to approaches like Agile and DevOps, software developers have become exponentially more
productive in recent years. But application security (AppSec) still requires many manual processes
and has not kept up, in either efficiency or effectiveness. When the speed of security lags the speed
of development, it is no wonder that the average number of serious vulnerabilities per application has
not decreased for two decades.1 From a developer’s perspective, legacy tools create delays at every
turn, creating coding bottlenecks during scans and forcing developers to do extensive manual work to
answer questionnaires, triage false positives, and identify and remediate vulnerabilities.

Fortunately, there is a better approach that solves the delays to coding caused by traditional
AppSec tools and processes. Security instrumentation builds security monitoring and response
into an application itself, continuously providing insight that developers can actually use to quickly
address problems. Tools like interactive application security testing (IAST), next-generation open-
source security (OSS), and runtime application self-protection (RASP) use instrumentation to provide
continuous protection throughout the software development life cycle (SDLC).

Using instrumentation as the basis for an AppSec strategy eliminates the inefficiencies that create
roadblocks for the development teams—repeated security scans, high false positives, and dealing with
non-risky open-source vulnerabilities. It also virtually eliminates false negatives, which can result in
huge delays to future projects while remediation is performed on applications after they are released
in production. As a result, development and security teams can become true partners in ensuring the
delivery of safe, innovative applications with aggressive timelines.

contrastsecurity.com2

1 “2019 Data Breach Investigations Report,” Verizon, April 2019.
2 “2019 Data Breach Investigations Report,” Verizon, April 2019.

The average number of
serious vulnerabilities per
application is 26.7—
The same as in 2000.2

Eliminating Security Scans: Saying
Goodbye To A Constant Interruption

Automating Remediation Verification:
Eliminating A Time-Consuming Manual Process

Avoiding False Negatives:
Escaping Huge Delays Later On

Doing Away With False Positives:
Returning Lost Time To Developers

Prioritizing Open-Source Vulnerabilities:
Eliminating Needless Manual Work

Achieving True Devsecops

01
02
03
04
05
06

Table of contents

Eliminating Security Scans:
Saying Goodbye To
A Constant Interruption01

E BOOK

Legacy AppSec tools like static application security testing (SAST) and software composition analysis
(SCA) rely on periodic scans, and any development work that takes place during the scan period
requires a new scan. These scans can be very time-consuming: One test found that vulnerability scans
can sometimes take more than two and a half hours to complete.3 Scans must be conducted every time
changes are made to the software, resulting in frequent interruptions to the development process—and
often significant delays in the delivery of the application.

Instrumentation eliminates the need to stop development for vulnerability and security scans across
the SDLC. Agents inside the application itself continuously monitor code and provide code-level
feedback that empowers developers to fix problems on the fly. The IAST functionality within an
instrumentation platform provides more complete and timely identification of vulnerabilities than legacy
SAST and dynamic application security testing (DAST) tools combined, while OSS keeps a detailed
database of all open-source dependencies—without interrupting development work with scans.

To ensure that an instrumentation platform is as effective as possible in eliminating scans and other
coding delays, developers should look for an integrated platform that provides built-in, automated
AppSec across the SDLC. It should support all applications, application programming interfaces (APIs),
libraries, and frameworks and should provide integrated protection across development servers, test
servers, and production servers.

contrastsecurity.com5

3 Michael D. Ernst, et al., “Boolean Formulas for the Static Identification of Injection Attacks in Java,” University of Washington, accessed April 14, 2020.
4 Michael D. Ernst, et al., “Boolean Formulas for the Static Identification of Injection Attacks in Java,” University of Washington, accessed April 14, 2020.
5 Tim Freestone, “AppSec Instrumentation Addresses AppSec Skills Shortage,” Security Boulevard, March 9, 2020.

One test showed that
vulnerability scans can
take code offline for as
long as 164 minutes.4

[B]ecause security
is integrated into the
application, security no
longer needs to disrupt
coding and release
cycles.5

Doing Away With False
Positives: Returning Lost
Time To Developers02

E BOOK

Because they scan lines of code without any consideration of how users interact with the software,
legacy SAST and SCA tools are notorious for false-positive. In fact, the Open Web Application Security
Project (OWASP) Benchmark Project finds that the average SAST tool has a nearly 23% false-positive
rate.6 The result is significant alert fatigue for developers. Every security scan results in wasted
time—and delays in pushing code—as developers sift through irrelevant and unprioritized alerts. For
applications in production, web application firewall (WAF) tools show a similar propensity to false
positives that can potentially pull developers off their current projects—in addition to impacting security
operations (SecOps) productivity—to investigate an extraneous alert for an earlier project.

contrastsecurity.com7

6 “Accurately Assessing AppSec With the OWASP Benchmark Project,” Contrast Security, December 2016.
7 Patrick Spencer, “Accuracy in AppSec is Critical to Reducing False Positives,” Contrast Security, April 8, 2020.

At the end of the day, your
security tools need to give
you less, but significant,
Alerts that contain the
correct intelligence to best
inform your security and
development teams.7

E BOOK

contrastsecurity.com8

8 John P. Mello Jr., “What is Runtime Application Self-Protection (RASP)?” TechBeacon, accessed April 15, 2020.

[Rasp] can distinguish
between actual attacks
and legitimate requests for
Information, which reduces
false positives and allows
network defenders to
spend more of their time
combating real problems
and less time chasing
digital Security dead ends.8

Instrumentation virtually eliminates false positives because it takes a totally different approach from
legacy AppSec tools. Instead of security testing and development operating in separate, asynchronous
silos, the two processes run in parallel. Instrumentation weaves sensors into the application that
watch what happens. Unlike SAST, which simulates a control flow and data flow graph, IAST and RASP
leverage the code flow graph that was created by the runtime. This provides deep visibility into both the
application code and its runtime environment.

IAST provides direct, real-time vulnerability analysis and threat telemetry—with unparalleled accuracy.
Once an application is in production and a zero-day attack occurs, RASP provides true self-protection
from within the application, providing the same highly accurate telemetry and combining it with policy-
based threat response. Instead of relying on pattern matching or behavioral learning, RASP simply
watches from inside the running code to understand how it is vulnerable.

To achieve the greatest reduction in false positives, developers should look for a security
instrumentation solution that uses multiple datasets in its continuous analysis. Ideally, an IAST tool will
combine the best features of SAST, DAST, configuration analysis, and open-source analysis with real-
time, code-level feedback.

The best instrumentation solutions also include route intelligence—the analysis of the data movement
that takes place when a user interacts with an application. Rather than analyzing lines of code, route
intelligence maps URLs to code paths that inform developers on how an application is accessed.
Because it analyzes how real users will interact with the software, route intelligence provides the most
complete visibility of the entire application attack surface.

Automating Remediation
Verification: Eliminating
A Time-Consuming
Manual Process03

E BOOK

contrastsecurity.com10

9 “Security and Privacy Controls for Information Systems and Organizations,” National Institute of Standards and Technology (NIST), Draft Special Publication 800-53, March 2020.
10 Tim Freestone, “AppSec Instrumentation Addresses AppSec Skills Shortage,” Security Boulevard, March 9, 2020.

When combined with
analysis techniques,
interactive application
security testing can identify
a broad range of potential
vulnerabilities and confirm
control Effectiveness.9

An appsec platform powered
by instrumentation...
Automates vulnerability
Identification as well as the
verification of vulnerability
remediation.10

Another time-consuming security process that developers must perform is verifying that their fixes to
identified vulnerabilities have actually corrected the problem. With legacy approaches to AppSec, this
is a totally manual—and often frustrating—process that results in further coding delays. Developers
and SecOps teams must spend valuable time tracing different iterations of code to verify vulnerability
remediation.

Instrumentation can address this problem through automation, using both IAST and RASP solutions.
After receiving actionable insight from the continuous scans that take place in the background, a
developer can adjust code and receive immediate feedback as to whether the fix was successful.

Instrumentation platforms that include route intelligence provide even more robust verification
feedback for fixes that are identified. This functionality can compare successive security assessment
results for each application route to ensure that the vulnerability originally discovered on an entry point
is no longer present. And because route intelligence is employed, remediation verification is automated,
even if application source code changes.

Prioritizing Open-Source
Vulnerabilities:
Eliminating Needless
Manual Work04

E BOOK

contrastsecurity.com12

11 Amy DeMartine and Jennifer Adams, “Application Security Market Will Exceed $7 Billion By 2023,” Forrester, updated March 29, 2019.
12 Liam Tung, “Open-source Security: This is Why Bugs in Open-source Software Have Hit a Record High,” ZDNet, March 13, 2020.
13 Roger A. Grimes, “Are Zero-day Exploits the New Norm?” CSO, February 21, 2019.
14 Amy DeMartine and Jennifer Adams, “Application Security Market Will Exceed $7 Billion by 2023,” Forrester, updated March 29, 2019.
15 Roger A. Grimes, “Are Zero-day Exploits the New Norm?” CSO, February 21, 2019.

Use of open-source code
by developers grew by
40% in a single year.14

Only 0.6% Of all CVES are
ever exploited in the wild.15

The development community is driving further efficiencies through an increased use of open-source
code. In fact, Forrester recently found a 40% jump in the use of open-source code in one year.11 At
the same time, the number of vulnerabilities identified in open-source code is skyrocketing at an
unprecedented clip.12 Having to track down huge numbers of Common Vulnerabilities and Exposures
(CVEs) is a major time sink for developers, and the vast majority of them are not risky. In fact, only 0.6%
of CVEs are ever exploited in the wild.13

Instrumentation solves this problem by providing deep insights into open-source dependencies
and the level of risk actually posed by specific open-source vulnerabilities. The OSS solution in an
instrumentation platform continuously maintains a detailed database of open-source dependencies
and tracks newly discovered CVEs that might cause problems in an application.

The best OSS solutions also analyze which vulnerabilities found in a code scan are actually used by
the application, eliminating a set of CVEs that pose zero risk to an organization. Developers should also
seek a solution that enables custom policies across the SDLC, and has the ability to block attacks at
runtime.

This risk management-based approach to open-source vulnerabilities, combined with real-time
intelligence from the IAST platform, virtually eliminate coding delays for developers resulting from
open-source vulnerabilities. The vulnerabilities that truly pose a risk are identified early and rise to the
top of the list, where they can be addressed in near real time.

Avoiding False
Negatives:
Escaping Huge Delays
Later On05

E BOOK

contrastsecurity.com14

16 Amy DeMartine and Jennifer Adams, “Application Security Market Will Exceed $7 Billion by 2023,” Forrester, updated March 29, 2019.
17 Mukesh Soni, “Defect Prevention: Reducing Costs and Enhancing Quality,” iSixSigma, accessed April 9, 2020.
18 Mukesh Soni, “Defect Prevention: Reducing Costs and Enhancing Quality,” iSixSigma, accessed April 9, 2020.

The cost of remediating
a vulnerability in an
application in production
is 100X MORE than with
vulnerabilities addressed
during the design phase.18

False negatives are ticking time bombs that are destined to blow up at a later date, and legacy AppSec
tools are notorious for missing vulnerabilities. The OWASP Benchmark Project finds that the overall
accuracy score is just 20% for the average SAST solution and only 18% for the average DAST tool.16
When these vulnerabilities are discovered—during final testing or in production—they are costly
and time-consuming to remediate. For applications in production, developers can be pulled off new
projects for time-consuming emergency remediation of old ones, resulting in huge delays to both.
And remediation of vulnerabilities is significantly more time-consuming and expensive at this stage.17

Instrumentation results in a dramatic reduction in false negatives, again because of the completely
different approach it takes compared with legacy tools. Instrumentation platforms do continuous
scanning and evaluate applications from a variety of angles. Again, instrumentation platforms that
include route intelligence provide further protection against false negatives, as they analyze an
application the way users interact with it.

Achieving
True Devsecops06

E BOOK

contrastsecurity.com16

Instrumentation is a game changer for developers when it comes to AppSec. Embedding continuous
security analysis into an application eliminates virtually all the frustrating coding delays that developers
have come to expect from security processes.

This removes the friction that often exists between these two teams, which have historically been
measured by different metrics that sometimes had them working at cross purposes. Developers can
take care of the vast majority of vulnerabilities without the involvement of the security team, removing
another source of coding delay. The result: more of a partnership between security and development,
and more of an integrated approach that could be called DevSecOps.

With security instrumentation, developers are freed up to focus on what they are good at—innovating
and pushing code—with the knowledge that the application they deliver will be secure.

A new approach that
combines sast, dast,
software composition
analysis (sca), and interactive
application security testing
(iast) breaks down the silos
separating different security
tools and processes.19

19 Tim Freestone, “AppSec Instrumentation Addresses AppSec Skills Shortage,” Security Boulevard, March 9, 2020.
20 Erik Costlow, “Changing the AppSec Game with Security Instrumentation,” Security Boulevard, April 2, 2020.

“Instrumentation-based
application testing
improves security without
skilled security staff or the
need to change code.20

contrastsecurity.com

Contrast Security provides the industry’s most modern and comprehensive Application
Security Platform, removing security roadblocks inefficiencies and empowering enterprises to write and release secure application code
faster. Embedding code analysis and attack prevention directly into software with instrumentation, the Contrast platform automatically detects
vulnerabilities while developers write code, eliminates false positives, and provides context-specific how-to-fix guidance for easy and fast
vulnerability remediation. Doing so enables application and development teams to collaborate more effectively and to innovate faster while
accelerating digital transformation initiatives. This is why a growing number of the world’s largest private and public sector organizations rely
on Contrast to secure their applications in development and extend protection in production.

240 3rd Street
2nd Floor
Los Altos, CA 94022
Phone: 888.371.1333
Fax: 650.397.4133

