
E BOOK

contrastsecurity.com

The Devsecops
Guide To Managing
Open-Source Risk

E BOOK

Executive Overview
Open source has become critical to software development by accelerating time to market while
reducing operating costs. At the same time, open-source software (OSS) components can introduce
security vulnerabilities, licensing issues, and DevOps workflow challenges. Successfully managing
OSS increasingly depends on automated application security (AppSec) processes. Automation helps
organizations track all the open-source components in use, identify any associated risks, and enable
effective mitigation actions so that teams can safely use open source without obstructing development
and delivery.

This eBook examines these issues and how defining actionable policies, gaining comprehensive
visibility of OSS components, and instituting pipeline controls can improve OSS vulnerability
remediation without impacting DevOps objectives.

contrastsecurity.com2

1 “The WIRED Guide to Open Source Software,” WIRED, April 24, 2019.

Oss is practically
everywhere—embraced
by major corporations,
including walmart,
Jpmorgan chase, and even
microsoft.1

Open-Source Components
Introduce Rapidly Growing Risks

Establishing
Continuous Visibility

Ensuring Fast and
Effective Remediation

Oss Management
Starts with Policies

Embedding and Enforcing
Controls by Pipeline

Software Security is Ephemeral
 -Monitor, Monitor, Monitor

01
02
03
04
05
06

Table of contents

Open-Source
Components
Introduce Rapidly
Growing Risks01

E BOOK

Software today is often built from as much as 90% open-source code—including hundreds of discrete
libraries in a single application.2 While OSS can help DevOps teams save time and money, unmanaged
use of open source introduces significant risks—both in terms of licensing complexities and security.

Open-source vulnerabilities typically stem from poorly written code that leave gaps, which attackers
can use to carry out malicious activities—such as extracting sensitive data or damaging a system.3 And
with thousands of new vulnerabilities being discovered each year, it becomes critical for organizations
to monitor sources continuously for information on new vulnerabilities and then dynamically map those
to the components used in the projects and environments where these components are run.

contrastsecurity.com5

2 “The Hidden Vulnerabilities of Open Source Software,” Harvard Business School, February 24, 2020.
3 “The Dangers of Open-Source Vulnerabilities, and What You Can Do About It,” Security Today, August 19, 2019.
4 “The Application Security Market Will Exceed $7 Billion By 2023,” Forrester, October 4, 2018.

Use of open-source code
by developers grew at
40% from 2018 to 2019
and will Continue (though
tapering down to 14%
by 2023).4

Oss Management
Starts with Policies02

E BOOK

The first step in managing open source is to define the characteristics of all components allowed
in an application. Open-source policies and procedures should provide guidance as to the proper
management of OSS components, including which type of OSS licensing is permitted, which type
of components should be used, when vulnerabilities should be patched, and how to prioritize
vulnerabilities.5 Organizations that are unsure of their obligations under license can experience
problems with intellectual property rights or monetary losses.6

To mitigate license risk, organizations must determine which licenses are acceptable by use case and
environment. In software that will be distributed externally, statically linked libraries issued under a
general public license (GPL) should be prohibited in order to avoid compliance problems. However, that
same license for components could be allowable for an internal-only application.

While risk and legal team policies need to be mindful of license usage, AppSec team policies need
to be cognizant of vulnerabilities. But a component with even a “high” severity vulnerability may be
acceptable in an application that manages data that is neither critical nor sensitive and that has a
limited attack surface. But according to policy, the same severe vulnerability would obviously need
to be unacceptable in a publicly facing application that manages credit card data. Policies may also
dictate the expected remediation time frames that development teams must adhere to when vulnerable
components are identified in their projects.

contrastsecurity.com7

5 “How to Make Your CSO Happy with Your Open Source Components,” CPO Magazine, August 28, 2019.
6 “The Risks and Potential Impacts Associated with Open Source,” DevOps.com, January 27, 2020.
7 “Open Source Software Policies—Why You Need Them And What They Should Include,” National Law Review, June 18, 2019.

“While the benefits of
oss are clear, it is also
clear that oss can pose
significant legal risks that
must be addressed.
The best way to manage
these risks is to have
a clearly written and
enforced oss policy.7

Establishing
Continuous
Visibility03

E BOOK

contrastsecurity.com9

8 “The Six Pillars of DevSecOps,” Cloud Security Alliance, August 7, 2019.
9 “Gartner: The Crucial Role of Open Source Software License Compliance,” ITAM Channel, December 23, 2019.

According to gartner,
one of the first steps to
improving software security
is ensuring that an sbom
exists for every software
application.9

omprehensive visibility is critical to securing testing, development, and production of applications.8
A software bill of materials (SBoM) is a definitive list of all the components (including OSS) used in
an application. Like a parts list in a manufacturing environment, it provides a simple way to inventory
and locate vulnerable components when necessary. Integrating open-source discovery into the
development process allows teams to ensure that all direct and transitive dependencies (viz.,
dependencies-of-dependencies) are accurately identified and added to the inventory. The result is an
SBoM against which organizations can track license, quality, and security variables.

SBoMs have the additional benefit of helping to standardize components. A rollup of the various
SBoMs provides an overall inventory of all OSS elements used across the organization. This process
typically reveals multiple versions of the same component (often in the same application) and multiple
libraries with similar functionality. Standardizing on a limited set of components helps the development
team simplify software maintenance.

Beyond automating the creation of an SBoM, a critical aspect of maintaining an effective inventory
is to ensure that it accurately and dynamically represents the relationships between components,
applications, and servers—so that DevOps organizations always know what is deployed, where each
component resides, and exactly what needs to be secured.

E BOOK

contrastsecurity.com10

10 “National Vulnerability Database,” NIST, accessed April 15, 2020.
11 “National Vulnerability Database,” NIST, accessed April 15, 2020.

To maintain a healthy
codebase, organizations
should keep an eye on
the oss components they
have introduced into
their software. Visibility
gives security Experts the
opportunity to respond to
security events in a timely
manner.11

Once an automated SBoM is built, it should be mapped to a reliable knowledge base of license, quality,
and security data. For example, the National Institute of Standards and Technology (NIST) sponsors the
National Vulnerability Database (NVD)—a public repository for information on software vulnerabilities,
including those in open-source software.10 This searchable database also includes descriptions and
scoring for Common Vulnerabilities and Exposures (CVE).

While the NVD is a good resource, a robust strategy requires that organizations monitor additional
primary sources such as ecosystem security advisories and project repositories for updates addressing
security and quality issues. Aggregating disclosures from all these sources provides for a more
comprehensive understanding of the risks associated with the use of open-source components and
ensures early alerts on a larger set of critical vulnerabilities.

Embedding
and Enforcing
Controls by
Pipeline04

E BOOK

contrastsecurity.com12

12 “5 Best Practices for Managing Open-Source Components,” DevOps.com, September 11, 2019.

Oss elements do not
pass the same quality
and standards checks as
proprietary code.
Unless each os component
is evaluated before
implementation, it is
easy to incorporate low-
quality code containing
vulnerabilities, lowering
the overall quality of
the code.12

The next step for securing use of OSS in DevOps environments is to embed automated controls in
continuous integration/continuous deployment (CI/CD) processes. Organizations, in turn, can leverage
this intelligence to alert developers and security staff of any risks detected and then automatically
enforce predefined policies by pipeline.

When properly operationalized, an open-source management solution can automatically analyze all
dependencies in a project. If vulnerable components are detected in a build, an automated policy
check should trigger a post-build action failing or mark the build as unstable based on set parameters.

Simultaneously, a Slack notification would be sent to the appropriate team with contextual information
regarding the component in question, the policy violation, mitigation guidance, and so forth.
Subsequently, a ticket would automatically be created in the team’s issue-tracking system (e.g., Jira) to
report on subsequent remediation work.

This is just one basic example to demonstrate how an automated workflow can be integrated into a
team’s existing process and toolchain. Regardless of the specific process and tooling an organization
has in place, the goal should always remain the same: deliver immediate and accurate feedback to
developers so that they can take direct action to keep the application secure and functional.

Ensuring Fast
and Effective
Remediation05

E BOOK

contrastsecurity.com14

13 “Why Fixing Security Vulnerabilities Is Not That Simple,” Security Intelligence, October 1, 2019.
14 “Test and Identify Security Vulnerabilities in Applications,” Morgan Franklin, March 12, 2020.
15 “From my Gartner Blog – Considering Remediation Approaches For Vulnerability Prioritization,” Security Boulevard, May 2, 2019.
16 “Every Hour SOCs Run, 15 Minutes Are Wasted on False Positives,” Security Boulevard, September 2, 2019.

As much as 25% of a
security analyst’s time
is spent chasing false
positives—sifting through
erroneous security
alerts or false indicators
of confidence—before
being able to tackle real
findings.16

An essential part of an effective open-source risk management program is the ability to deliver the quickest
possible turnaround for resolving issues once they emerge. This is crucial, since attackers may have free
and almost immediate access to exploit kits after a CVE is disclosed. In the case of zero-day attacks against
OSS components in production applications, organizations are at immediate risk for the duration of the
vulnerability exposure window.

To put this in perspective, it can take teams months to apply a fix and push it to production.13 With cyber
criminals often launching attacks on newly exposed vulnerabilities in hours or days, a different approach
to protection is needed. It requires an AppSec solution that can immediately protect against exploitation
of open-source vulnerabilities, which provides time for development teams to resolve issues based on
prioritized risk. Such a solution is comprised of two components:

1.	 Runtime protection. The solution must be designed to continuously monitor production applications and automatically

block attacks on vulnerable OSS components to prevent exploitation at runtime. This is achievable with runtime application

self-protection (RASP), which acts as an immediate compensating control by detecting and blocking attacks against

any actual vulnerabilities (including OSS) from within the application itself. RASP runs security checks continuously and

responds to live attacks by terminating the bad actor’s session and alerting the InfoSec team of the attack.14

2.	 Runtime usage analysis. Given that an application typically includes hundreds of open-source components, it is likely

that many issues will be detected. Often the number of potential OSS problems grows so high that developers become

overwhelmed.

As a result, organizations must be able to analyze runtime usage to directly observe and measure the behavior of the

running application. This analysis enables effective prioritization of vulnerable components that are actually used by the

application, and deprioritization of those that are not. Other security approaches that rely on static code analysis to guess

if a component might be used by the application are plagued with false positives and false negatives. These inaccuracies

create noise that interferes with effective and automatic prioritization of vulnerabilities.15

License compliance risk should be addressed according to organizational policies. This often requires
replacing any problematic open-source components with those that offer similar functionality issued under
an approved license.

Software Security
is Ephemeral
 —Monitor, Monitor,
Monitor06

E BOOK

contrastsecurity.com16

Security is not a fixed state. Even if an application is released without any known risks (viz., CVEs),
new OSS vulnerabilities are disclosed every day. These must also be mapped to existing SBoMs and
monitored in production. Hackers are constantly watching for new vulnerabilities; organizations must
do the same.

As a result, organizations must automate all activities discussed above. It starts with creating an SBoM
and cross-referencing it with a robust knowledge base to detect risk. The AppSec solution must then
enforce policies across pipelines to flag violating components while continuously streaming actionable
feedback back to security and development teams. That leads to effectively prioritizing findings and
automatically protecting production applications where needed.

Trying to keep track of
thousands of vulnerabilities
manually has become an
impossible task for humans
alone. Automation tools
can help you create a
vulnerability inventory, keep
track of the vulnerabilities,
and prioritize remediation.19

17 “How to Make Your CSO Happy with Your Open Source Components,” CPO Magazine, August 28, 2019.

contrastsecurity.com

Contrast Security provides the industry’s most modern and comprehensive Application
Security Platform, removing security roadblocks inefficiencies and empowering enterprises to write and release secure application code
faster. Embedding code analysis and attack prevention directly into software with instrumentation, the Contrast platform automatically detects
vulnerabilities while developers write code, eliminates false positives, and provides context-specific how-to-fix guidance for easy and fast
vulnerability remediation. Doing so enables application and development teams to collaborate more effectively and to innovate faster while
accelerating digital transformation initiatives. This is why a growing number of the world’s largest private and public sector organizations rely
on Contrast to secure their applications in development and extend protection in production.

240 3rd Street
2nd Floor
Los Altos, CA 94022
Phone: 888.371.1333
Fax: 650.397.4133

