
E BOOK

contrastsecurity.com

How Manual
Application
Vulnerability
Management
Delays Innovation
and Increases
Business Risk

E BOOK

Executive Overview
With 62% of data breaches and 39% of incidents occurring at the web application layer,1 identifying and
remediating these errors as quickly as possible is a primary concern for an organization’s security team.
However, development teams have other priorities—namely, driving digital transformation forward by
ensuring that code commits and product releases are completed on schedule. Neither the security nor
the development team should compromise on their key business objectives.

Traditional approaches to application security (AppSec), such as static application security testing (SAST)
and dynamic application security testing (DAST), lack visibility across an application’s attack surface. As
they analyze lines of code using brute force or look for code vulnerabilities based on a predetermined
malware signature list, SAST and DAST approaches miss false negatives while incurring high volumes
of false positives. Further, with significant volumes of cyberattacks employing unknown—or zero-
day—threats, SAST and DAST simply are unable to protect modern software. Visibility extends beyond
challenges with vulnerability identification—namely, lacking visibility into software routes, developers must
expend significant time searching for and verifying that vulnerabilities were fixed.

contrastsecurity.com2

1 “2019 Data Breach Investigations Report,” Verizon, May 2019.

62% of data breaches
and 39 percent of
incidents occur at the web
application layer.

http://https//enterprise.verizon.com/resources/reports/2019/2019-data-breach-investigations-report.pdf

When Competing Forces Collide:
Speed and Security

Vulnerability Remediation Verification
is Frustrating and Time-Consuming

Vulnerability Identification
with Brute Force using SAST and DAST

• Focus on lines of code causes missed vulnerabilities
• Targeting APIs overlooks code execution paths
• Inaccurate detections waste developer time

Conclusion

01
02

03
04

Table of contents

When Competing Forces Collide:
Speed and Security01

E BOOK

When Competing Forces Collide: Speed and Security
Development and security teams are frequently at odds. On one side, developers are focused on code
commits, release dates, and timelines. Their performance metrics are based upon getting a product
out the door—on schedule and on budget. In contrast, security teams are most concerned with
preventing cybersecurity risks to the organization and ensuring that they maintain compliance with
applicable regulations.

The majority of organizations struggle to bridge the gap between these viewpoints. As many as 52% of
companies admit to cutting back on security measures in order to meet business deadlines.2

contrastsecurity.com5

2 “52% of Companies Sacrifice Cybersecurity for Speed—Webinar Recap,” Threat Stack, March 13, 2018.
3 “2020 Application Security Observability Report,” Contrast Security, June 2020.

26%
of enterprise applications contain
serious vulnerabilities.3

https://www.threatstack.com/blog/52-of-companies-sacrifice-cybersecurity-for-speed-webinar-recap
https://www.contrastsecurity.com/hubfs/2020-Contrast-Labs-Application-Security-Observability_Annual_Report_07152020.pdf

E BOOK

This conflict between the security and development teams creates significant security risks for an
organization. If security is seen as an impediment to development, security testing may be performed in
a cursory manner, if not skipped entirely, allowing vulnerable code to reach production.

This puts an organization, or any users of its products, at risk of cyberattacks that could result in
operational disruption, data breaches, and brand damage. Additionally, a failure to identify and
remediate vulnerabilities can incur penalties levied due to regulatory noncompliance.

contrastsecurity.com6

4 “2019 Cost of a Data Breach Report,” IBM Security and Ponemon Institute, July 23, 2019.

Integration of
Security Testing into
Development Processes
Reduces Data Breach
Costs by an Average of
$10.55 Per Compromised
Record.4

https://securityintelligence.com/posts/whats-new-in-the-2019-cost-of-a-data-breach-report/

Vulnerability Identification
with Brute Force using
SAST and DAST02

E BOOK

contrastsecurity.com8

Vulnerability Identification with Brute Force using
SAST and DAST
SAST and DAST are two very different approaches to application security testing. SAST takes a
“white box” and signature-based approach to testing. These solutions attempt to build a model of an
application and pseudo-execute it to guess the application’s runtime behavior. However, it is unable to
see how an application would actually perform at runtime.

DAST, on the other hand, is “black box” testing performed using an application programming interface
(API). The application’s API is subjected to a barrage of attempted attacks and malicious HTTP inputs
in order to determine if an application has defenses in place to protect against them. Like SAST, these
solutions lack visibility to the internals of an application.

A well-designed SAST and/or DAST solution is capable of identifying a variety of vulnerabilities
within an application. However, they also have shortcomings that lead to both false positives and
false negatives:

FOCUS ON LINES OF CODE CAUSES MISSED VULNERABILITIES

When searching for vulnerabilities, SAST solutions focus on lines of code, which creates false positives
due to analysis of “dead code” within an application, which is never reached or executed.

Additionally, this approach can suffer from a high false-negative rate due to a lack of visibility into
library code. As a result, they are unaware of the custom detection rules that should be applied to
that library. For example, a library function may use a string passed as input when building a directory,
creating a potential resource vulnerability. Without insight into the code, a SAST solution is unaware of
the potential risk.

SAST solutions’ treatment of bulk data structures, such as arrays, lists, and collections, also generates
false positives since a single untrusted value in the array causes all of its outputs to be untrusted.
Finally, SAST is heavily dependent upon the quality of its signature library and is incapable of detecting
unknown and zero-day attacks.

TARGETING APIS OVERLOOKS CODE EXECUTION PATHS

DAST solutions perform analysis via an API. By testing an application against a library of known
attacks, such as SQL injection and cross-site scripting (XSS), these analyzers can identify a range of
vulnerabilities.

However, DAST solutions lack visibility into the internal workings of an application, meaning that they
can overly test certain APIs and execution paths within the application and completely overlook the
existence of others. The latter results in false negatives (vulnerabilities that are missed in analysis).

E BOOK

contrastsecurity.com9

False negatives are not the only problem created by DAST solutions. These analyzers are also prone
to false positives since they alert on probes as well, where a malicious input never reaches vulnerable
code. Cyber criminals commonly use probes to detect potentially vulnerable applications; however,
applications not vulnerable to the attack are unaffected. Forcing developers to fix errors delays code
commits and software releases.

INACCURATE DETECTIONS WASTE DEVELOPER TIME

False positives and false negatives are very different, but they both result in wasted time for
an organization. Each false positive that a SAST or DAST solution generates must be manually
investigated and remediated by developers, delaying code commits and release cycles.

E BOOK

contrastsecurity.com10

43%
of organizations cite API security
as a concern.5

5 “The State of API 2019,” SmartBear, February 2019.

https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf

The impacts of false negatives, on the other hand, come later when a detected vulnerability in
production code forces costly patch development, and potentially, incident response activities
addressing breaches caused by exploitation of these vulnerabilities. Fixing a vulnerability in
development costs an average of $80, compared to an average cost of $7,600 for correcting
a vulnerability in production—slightly more than 1 percent of the cost of fixing a vulnerability in
production.6 The cost can be substantial. For example, as the average web application contains 26.7
vulnerabilities,7 the cost of fixing these vulnerabilities in production would be over $202,920. And as
most organizations have 10, 20, 30, or more applications in development, the costs can quickly spiral.

E BOOK

contrastsecurity.com11

46%
of organizations had an incident
caused by an unpatched vulnerability.8

6 Eitan Worcel and Erez Rokah, “Integrate Application Security Testing into your SDLC,” IBM, February 23, 2015.
7 “Malware and ransomware attack volume down due to more targeted attacks,” Help Net Security, February 5, 2020.
8 “2020 CISO Benchmark Report: Securing What’s Now and What’s Next,” Cisco, February 24, 2020..

https://www.slideshare.net/ibmsecurity/integrate-application-security-testing-into-your-sdlc
https://www.helpnetsecurity.com/2020/02/05/ransomware-attack-volume-down/
https://www.cisco.com/c/en/us/products/security/ciso-benchmark-report-2020.html#~ciso

Vulnerability Remediation
Verification is Frustrating
and Time-Consuming03

E BOOK

contrastsecurity.com13

Vulnerability Remediation Verification is Frustrating and
Time-Consuming
While SAST and DAST can help to identify vulnerabilities in code, this is only part of the vulnerability
management problem. Once a vulnerability has been identified, it needs to be remediated and
undergo additional testing to ensure that the fix has occurred and does not create a new vulnerability
or impact the functionality and security of the rest of the application.

In many cases, vulnerability remediation and remediation re-testing are manual processes. Once
developers have run an application security test, which typically occurs near the end of the
development life cycle, they are presented with a list of vulnerabilities to remediate. Manually
remediating vulnerabilities, including identifying where the vulnerability exists in the code, and verifying
that the security gap is closed takes up time, frustrates developers, and erodes relationships between
the security and development teams.9

In response and in an attempt to meet release deadlines, security testing and vulnerability remediation
are often partially completed or performed in a cursory manner. Any missed or unmitigated
vulnerabilities could leave an organization open to attack through the application, creating security and
compliance issues for the organization.

9 “2019 Global Developer Report: DevSecOps,” GitLab, July 2019.

https://about.gitlab.com/developer-survey/previous/2019/

Conclusion04

E BOOK

contrastsecurity.com15

As development processes accelerate to keep pace with the modern world of application development,
organizations must adopt security automation in order to keep up while remaining secure. Traditional
vulnerability detection solutions, such as SAST and DAST, which can take hours or days to analyze an
application, are ill-suited to organizations making this move to DevSecOps.

One of the greatest limitations of these solutions is their lack of visibility into an application’s internal
operations. This limited visibility causes false positives and false negatives, which waste developers’
time and create risk. A solution that “sits inside” an application and has full visibility into its state and
execution paths can provide extremely high vulnerability detection accuracy and a very low false-
positive rate.

contrastsecurity.com

Contrast Security provides the industry’s most modern and comprehensive Application
Security Platform, removing security roadblocks inefficiencies and empowering enterprises to write and release secure application code
faster. Embedding code analysis and attack prevention directly into software with instrumentation, the Contrast platform automatically detects
vulnerabilities while developers write code, eliminates false positives, and provides context-specific how-to-fix guidance for easy and fast
vulnerability remediation. Doing so enables application and development teams to collaborate more effectively and to innovate faster while
accelerating digital transformation initiatives. This is why a growing number of the world’s largest private and public sector organizations rely
on Contrast to secure their applications in development and extend protection in production.

240 3rd Street
2nd Floor
Los Altos, CA 94022
Phone: 888.371.1333
Fax: 650.397.4133

