
E B O O K

Application security:
Five principles for
‘Shifting smart’

contrastsecurity.com

3 contrastsecurity.com

Introduction

Many in the application security community have been obsessed with “shifting left”—that is, moving
application security testing earlier in the software development life cycle (SDLC).

Shifting left was a useful concept a decade or two ago when security testing was not routinely done until
late in the process. But recently, some organizations have been fixated on shifting further and further left
beyond where it can be effective for many common security vulnerabilities.

Organizations need to take a step back and think about what makes the most sense in their specific
context. In my opinion, rather than shifting left for the sake of shifting left, organizations should shift
smart—optimizing security testing throughout the SDLC based on each application’s specific needs.

Here are five principles for shifting smart with application security.

Jeff Williams
CTO and cofounder of Contrast Security —helping companies become truly
great at securing their apps and APIs.

http://contrastsecurity.com

contrastsecurity.com3

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

Hardening your stack can be
done before any code even gets
written and will allow you great
flexibility in how you perform
security testing and respond to
new vulnerabilities.

You wouldn’t think of deploying a host without hardening it against
attacks. But most organizations don’t harden the software stack that
they run on those platforms.

Hardening your software stack with runtime protection will
prevent vulnerabilities from being exploited—even if developers 	
make mistakes.

This is a strong mitigating protection for most vulnerabilities, 	
including published common vulnerabilities and exposures (CVEs) in
third-party libraries, problems in custom code and zero-day 	
vulnerabilities that were unknown before.

1 | Harden your software stack.

contrastsecurity.com4

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

For example, you can eliminate
SQL injection testing if your
application doesn’t have an SQL
database. And you can test your
authentication and access
control mechanisms when
they’re fully deployed
and configured.

Rather than blindly casting a net for everything in every application, you
should prioritize security testing based on your threat model. OWASP, NIST
and PCI software security standards all now require threat modeling.

You only need to test your defenses for the threats that you actually face.
Standards are great, but be sure to tailor them to your business.

The types and timing of needed security testing can differ from application
to application.

Fortunately, most of the development pipeline is automated these days,
and the time from integrated development environment (IDE) to production
is measured in minutes. So shifting some tests “right” to take advantage of
thecontext available in a fully assembled and running application doesn’t
mean you have to give up the benefits of near real-time feedback 		
to developers.

2 | Test what matters when it matters!

contrastsecurity.com5

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

It is worth considering whether it’s worth pushing security testing all
the way left into the IDE—even before the software is compiled 		
and packaged.

You lose a lot of context when you’re only looking at source code.

There are many kinds of vulnerabilities, and it is naïve to think that
shifting as far left as possible works for all of them.

Here are a few examples:

• SQL injection.

The best way to do the data flow analysis
necessary to detect these vulnerabilities
is to observe actual data flowing through
a running application. For this and other
injection vulnerabilities, an organization is
actually better off shifting a bit to the right
and using interactive application security
testing (IAST) in a test environment with the
fully assembled application.

These vulnerabilities are critical and almost
always in custom code that’s unique to a
particular application, making it extremely
hard to find them in the early stages of
development. Most organizations test for
this with manual penetration testing very
late in the SDLC—another shift to the right.

In most cases, this vulnerability doesn’t
involve complex data or control flow and can
be found without a lot of other context. It is
generally fast, easy and fairly accurate to
search the use of weak algorithms in the IDE
or code repository.

S P O T L I G H T

Shifting security testing into the automated
build pipeline, or into the integrated
development environment (IDE)?

Spotlight

• Authentication and authorization. • Weak encryption algorithm.

contrastsecurity.com6

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

For example, injection
vulnerabilities are difficult to
test with just source code.
 Interactive tools that trace real
data through running code are
far faster and more accurate.
Authentication and access
control are often custom-built
and must be analyzed manually
with code review or
penetration testing.

Builders cannot build a house with just a screwdriver, and they don’t put
screws in with a saw.

Your goal should be to use the best testing technique for each of
your defense strategies. You do not need to test every defense with
every single technique.

Rather than trying to use every kind of tool on every kind of vulnerability,
organizations need to select security testing approaches that deliver the
optimal balance of fast, complete, accurate, easy and cost-efficient.

Seek out tools that provide strong evidence of coverage and accuracy for a
class of vulnerabilities. Running weaker tools for that same type of issue is
unlikely to make your overall results stronger and introduces opportunity
costs for your teams.

3 | Test with the best.

contrastsecurity.com7

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

If information about a 	
vulnerability gets back to the
developer that introduced it
quickly, that section of code is
fresher in their memory —making
the fix faster and easier.

Even in cases when security testing shifts later in the process, notification
should go left.

You should focus on how quickly the security feedback gets to
those who need it and route it through the tools they’re 			
already using.

While application security dashboards can be useful for managers, you
don’t want developers having to log in and check a separate system. If you
have fast and accurate vulnerability data, developers should see that	
information immediately so they can fix it as part of their normal work.

If you put vulnerabilities into a defect database, the odds are that they will
never be fixed. Once vulnerabilities become part of the backlog, you’ll
have to rely on expensive risk prioritization processes, selecting issues for
sprints, service-level agreements, work tracking, retesting and so forth—all
of which can be slow and expensive. A high-functioning organization may
be able to remediate vulnerabilities within days. However, research has
found that it typically takes months1 for organizations to fix flaws that were
discovered by static methods.

4 | “Notify left.”

1 https://www.veracode.com/sites/default/files/pdf/resources/infosheets/soss12-healthcare-infosheet.pdf

https://www.veracode.com/sites/default/files/pdf/resources/infosheets/soss12-healthcare-infosheet.pd

contrastsecurity.com8

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

Ultimately, the most
cost-effective application
security program goes beyond
finding and fixing vulnerabilities
quickly. It helps prevent
vulnerabilities from existing in
the first place.

You certainly should invest in regular security training for developers, as
the application security landscape is evolving at least as quickly as the
world of DevOps.

But bear in mind that developers learn a lot more by working on their own
code than they do by sitting in a generic training session.

That is another reason that getting rapid feedback back to developers is
critical—it can help them learn from their coding mistakes and not	
repeat them. Repeat that process a dozen times for different kinds of 		
vulnerabilities, and you have a developer who introduces far fewer of them.

5 | Optimize for learning.

contrastsecurity.com9

E B O O K | 5 P R I N C I P L E S F O R ‘ S H I F T I N G S M A R T ’

Summary
Many companies that try “shift-left” and “developer-first” security tools can experience an avalanche of false positives from code
repositories that aren’t in use, code that never runs, tools without enough context and tools that sacrifice accuracy for speed.

We must recognize that application security is a complex problem and rather than blindly shifting left or blindly shifting everywhere,
organizations should shift smart. One key factor is to perform security testing only when you have enough “context”—the details of
how an application or API actually functions—to accurately identify real, exploitable vulnerabilities.

If you want to learn more, or see how Contrast tests and
secures applications visit www.contrastsecurity.com and
click on the “Get DEMO” button on the top of every webpage
to schedule a personal introduction to Contrast..

http://www.contrastsecurity.com

Contrast Security is the world’s leading provider of security technology that enables software applications to protect
themselves against cyberattacks, heralding the new era of self-protecting software. Contrast’s patented deep-security
instrumentation is the breakthrough technology that enables highly accurate assessment and always-on protection of
an entire application portfolio, without disruptive scanning or expensive security experts. Only Contrast has sensors
that work actively inside applications to uncover vulnerabilities, prevent data breaches and secure the entire
enterprise from development, to operations, to production.

6800 Koll Center Parkway
Suite 235
Pleasanton, CA 94566
Phone: 888.371.1333

contrastsecurity.com

http://www.contrastsecurity.com
https://www.facebook.com/contrastsec
https://www.linkedin.com/company/contrast-security/
https://www.youtube.com/@ContrastSecurity
https://twitter.com/contrastsec

